Results of the IMO Video Meteor Network - July 2008 =================================================== From the viewpoint of the weather, July was comparable with the month before: It was not perfect, but there is no reason to complain if nine cameras managed to collect twenty or more observing nights. Especially in the last few days of July the skies were clear at almost every site, so that at times more than twenty cameras were operated in parallel. Needless to say that we could collect more observing times and meteors than in any other July before. The increasing meteor activity - mainly thanks to the alpha-Capricornids and southern delta-Aquariids - was highly welcome. At mid-July first Perseids became visible. They are a minor shower at the beginning, but towards the end of July they became dominating. Only the southern delta-Aquariids could catch up with the Perseid counts in the days of their maximum around July 28. A nice example for an SDA radiant plot was provided by TOMIL, the camera of Tomas and Milos Weber (figure 1, left). It was able to record 63 meteors (including 11 SDA) within just two hours on July 27/28 thanks to the powerful image intensifier. Rosta Stork of Ondrejov enjoyed even better observing conditions in the next night, when he recorded 273 meteors (among them 33 SDA) in less than six hours (figure 1, right). Figure 1: The radiant plots of TOMIL (left ) from July 27/28 and OND1 (right) from July 28/29 show nicely the radiant of the southern delta-Aquariids. The "most beautiful" meteor of the month, however, was captured by Stefano Crivello, who recorded a double Capricornid on July 27 at 01:55 UT (figure 2). Figure 2: Double Capricornid, recorded by Stefano Crivello with STG38 on July 27, 01:55 UT. Beside archiving the July data also the next full analysis of the video meteor database was prepared in the last few days. In particular the scatter respectively observing errors of video meteors with respect to position and angular velocity was of interest. As explained before, the meteor shower analysis relies on the accumulation of probabilities, that meteors origin from a particular radiant with given position and velocity. That probability is derived from two quantities - the distance at which the backward prolongation of the meteor misses the (point-like) radiant, and the difference between the observed and the expected angular velocity. The latter one is calculated from the distance of the meteor from the radiant, and the meteor shower velocity. Those who have used the Radiant software of Rainer Arlt know the phenomenon: With the parameter "Standard Deviation" you can adjust whether the probability distribution of a meteor in probability mode becomes a small droplet (small scatter, the radiation area can be well defined) or a large area (large scatter, the radiant can be determined only approximately). You need to adjust the settings by trial and error: When the standard deviation is set too small, random sub-radiants will show up, whereas a meteor shower radiant becomes blurred, when the standard deviation is set too large. In the 2006 analysis I had chosen both for the scatter in angular velocity and radiant distance a normal (Gaussian) distribution. The standard deviation was set empirically to a "sensible" value. This time, the standard deviation was to be computed from data. For this reason, short intervals in solar longitude at the maximum times of the Perseids, Orionids, and Geminids were chosen, in which the radiant was compact and showed only little drift. Then all shower members in these solar longitude intervals were determined (more than 33,000 meteors overall) and the distributions were computed, how the angular meteor velocity differed from the expected value and how far the backward prolongation missed the radiant. In addition, the dependency of these distributions from the angular velocity of the meteor and its distance from the radiant was analysed. Here is a summary of the results: * On average, the scatter is lower than expected. The observed angular velocity of half of all meteors deviates less than half a degree per second from the expected value (whereby the underlying PosDat database contains only integer values for the velocity, anyway), and the backward prolongation missed the radiant by less than three quarter of a degree. At one sigma (68.3%) the deviation is 0.8 deg/s and 1.3 deg. * Ihe distributions are not Gaussian as expected, but can be well described by a Laplace distribution (i.e. a function of the type e^-x instead of e^-x*x). The main difference is, that for large values the Laplace function converges much slower to zero than the Gauss function. * There is a clear dependency between the scatter in angular velocity and the meteor velocity (the faster the meteors, the large the scatter - the scatter for meteors that move faster than 30 deg/s is about twice as large as for meteors slower than 10 deg/s). On the other hand, the scatter of the radiant miss distance of the backward prolongations is essentially independent from the distance of the meteor from the radiant. The IMO handbook for meteor observers, by the way, suggests that in the analysis of visual observation larger errors should be accepted both for the angular velocity and the radiant miss distance for meteors that are fast or far away from the radiant. Figure 3 and 4 show the cumulative distributions for those 33,000 Perseids, Orionids and Geminids. Figure 3: Cumulative distribution of velocity errors for different angular velocities of meteors. Small crosses mark the corresponding Laplace fits. Figure 4: Cumulative distribution of radiant miss distances for different distances of the meteor from the radiant. Small crosses mark an lower and upper Laplace fit. Ironially, when I carried out the meteor database analysis for the first time before the AKM spring meeting 2006, I accidentally used a Laplace distribution. Later I noticed this "error" and used a normal distribution for the analysis later presented at the 2006 IMC - as one usually does if the true probability distribution is unknown. Now it turns out that the Laplace distribution would have been better. The influence of the distribution is not as dramatic, however, that we may expect completely different results now. At least the next analysis will not be done with empirically set parameters, but with a probability distribution derived from data, so from the point of view of probability theory everything is fine. Strictly speaking, the distributions models only the scatter for compact radiants. If the radiation area is of bigger size, the distribution should be wider as well - but that's a different topic. 1. Observers ============ Code Name Place Camera FOV LM Nights Time Meteors -------------------------------------------------------------------------------- BENOR Benitez-S. Las Palmas TIMES4 (1.4/50) 20 dg 3 mag 5 33.5 h 93 TIMES5 (0.95/50) 10 dg 3 mag 5 18.4 h 34 BRIBE Brinkmann Herne HERMINE (0.8/6) 55 dg 3 mag 23 75.6 h 252 CASFL Castellani Monte Baldo BMH1 (0.8/6) 55 dg 3 mag 21 88.9 h 278 BMH2 (0.8/6) 55 dg 3 mag 27 95.4 h 261 CRIST Crivello Valbrevenna STG38 (0.8/3.8) 80 dg 3 mag 4 14.9 h 64 ELTMA Eltri Venezia MET38 (0.8/3.8) 80 dg 3 mag 3 19.7 h 123 GONRU Goncalves Tomar TEMPLAR1(0.8/3.8) 80 dg 3 mag 27 161.1 h 451 HERCA Hergenroth. Tucson SALSA (1.2/4) 80 dg 3 mag 15 73.0 h 229 HINWO Hinz Brannenburg AKM2 (0.85/25) 32 dg 6 mag 11 41.1 h 206 KACJA Kac Kostanjevec METKA (0.8/8) 42 dg 4 mag 11 64.2 h 187 Kamnik REZIKA (0.8/6) 55 dg 3 mag 8 38.5 h 165 Ljubljana ORION1 (0.8/8) 42 dg 4 mag 23 103.9 h 297 LUNRO Lunsford Chula Vista BOCAM (1.4/50) 60 dg 6 mag 22 89.5 h 1031 MOLSI Molau Seysdorf AVIS2 (1.4/50) 60 dg 6 mag 13 55.9 h 955 MINCAM1 (0.8/6) 55 dg 3 mag 19 84.9 h 273 Ketzuer REMO1 (0.8/3.8) 80 dg 3 mag 24 91.5 h 412 REMO2 (0.8/3.8) 80 dg 3 mag 24 88.5 h 439 PRZDA Przewozny Berlin ARMEFA (0.8/6) 55 dg 3 mag 14 69.5 h 428 SLAST Slavec Ljubljana KAYAK1 (1.8/28) 50 dg 4 mag 20 78.4 h 154 STOEN Stomeo Scorze MIN38 (0.8/3.8) 80 dg 3 mag 13 73.9 h 291 STORO Stork Kunzak KUN1 (1.4/50) 55 dg 6 mag 2 11.5 h 253 Ondrejov OND1 (1.4/50) 55 dg 6 mag 4 21.3 h 693 STRJO Strunk Herford MINCAM2 (0.8/6) 55 dg 3 mag 14 32.8 h 86 MINCAM3 (0.8/8) 42 dg 4 mag 5 19.2 h 66 MINCAM5 (0.8/6) 55 dg 3 mag 11 34.9 h 113 WEBMI Weber Chouzava TOMIL (1.4/50) 50 dg 6 mag 6 10.9 h 237 YRJIL Yrjola Kuusankoski FINEXCAM (0.8/6) 55 dg 3 mag 1 1.8 h 7 -------------------------------------------------------------------------------- Sum 31 1592.7 h 8078 2. Observing Times (h) ====================== July 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 -------------------------------------------------------------------------------- BENOR - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - BRIBE 5.9 - 0.3 6.0 - 2.8 0.3 0.8 - - - 1.0 5.0 6.3 0.8 CASFL 6.0 2.5 4.0 6.0 - - 4.1 - 5.2 4.7 0.7 3.2 2.8 3.8 6.4 6.0 1.1 3.5 1.2 - 0.8 1.6 1.6 5.2 0.5 0.5 2.0 2.8 4.5 6.4 CRIST - - - - 2.7 - - - - - - - - - 6.3 ELTMA - - - - - - - - - - - - - - - GONRU 0.8 7.3 7.2 - 7.3 7.4 7.4 7.4 3.4 1.0 1.9 6.3 7.4 7.2 7.5 HERCA - - - - - - - 2.0 - - - - - - 3.2 HINWO 4.4 4.8 - 4.9 2.3 - - 2.0 - 2.1 - - - - 5.4 KACJA 6.1 - 1.7 - 4.0 - - - - 6.6 4.2 6.2 - - - 5.6 6.2 0.5 - 5.9 - - 6.3 - 4.7 - 3.8 - - - 6.3 3.3 3.2 - 6.3 - - 2.9 5.5 6.5 6.6 3.6 - 3.7 5.7 LUNRO 2.6 3.0 - 7.5 - - - - - 3.0 1.0 6.0 7.7 2.7 5.8 MOLSI 4.5 - - 3.7 3.1 - 4.9 - - 4.9 - - - - 4.5 5.7 1.8 - 5.7 3.7 - 5.8 5.9 - 4.9 - - - 1.2 6.1 4.4 4.5 - - 4.5 - 4.7 0.7 3.2 - 0.3 3.9 5.0 1.0 - 4.4 4.5 - - 4.6 0.6 3.1 0.7 4.7 - 0.7 2.3 4.9 2.5 - PRZDA - - - - - - - - 4.8 - - 3.4 5.0 - - SLAST 4.8 2.0 0.3 - 4.6 - 2.0 3.7 4.0 5.8 5.2 - - - 5.0 STOEN 5.5 - - 5.7 - - 5.1 6.1 5.8 5.6 - - - - 6.2 STORO - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - STRJO 3.4 3.0 - 0.5 - 2.5 0.5 - - - 0.6 1.4 4.3 3.4 - 3.7 - - - - - - - - - - - - - - 2.1 - - 1.0 - - - - - - - 0.5 - - - WEBMI - 1.9 - - 2.0 - 1.9 - - - - - - - - YRJIL - - - - - - - - - - - - - - - -------------------------------------------------------------------------------- Sum 82.2 45.9 20.7 42.2 51.0 14.1 41.4 40.1 41.8 50.3 21.7 43.6 44.9 36.3 69.3 July 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 ------------------------------------------------------------------------------------- BENOR - - - - - - - - - - 6.5 7.0 3.8 8.1 8.1 - - - - - - - - - - - 1.5 3.8 6.6 2.5 4.0 - BRIBE 2.0 - - 4.4 2.8 1.6 3.9 6.6 5.7 - 0.8 4.7 6.8 0.8 2.0 4.3 CASFL 2.2 - - 4.4 - - 5.7 6.7 6.7 3.3 - - - 3.8 2.5 4.2 4.6 - 1.0 6.5 - - 6.7 6.7 3.2 6.8 1.0 6.9 5.9 3.2 2.0 3.2 CRIST - - - 1.1 - - - - - - 4.8 - - - - - ELTMA - - - - - - - - - - - 6.9 5.6 - - 7.2 GONRU 7.4 7.5 1.2 - 6.0 5.2 5.2 7.1 4.1 - 7.7 - 7.6 7.9 6.7 8.0 HERCA 6.3 4.0 3.1 - - 5.1 5.1 0.5 4.5 4.3 - 2.5 7.6 7.9 8.4 8.5 HINWO - - - - - - - - - 1.5 - 6.0 - 1.4 - 6.3 KACJA - - - 6.8 - - - - - - - 6.9 7.3 - 7.0 7.4 5.5 - - - - - - - - - - - - - - - 6.7 - 0.9 6.8 - - 3.5 2.1 3.1 4.1 - 7.2 7.2 4.3 1.6 2.8 LUNRO 1.7 5.9 - - 1.0 8.0 2.0 2.6 2.3 7.9 4.0 - 3.6 3.3 4.0 3.9 MOLSI - - - - - - - 5.0 - 4.8 - 5.8 5.7 3.5 0.3 5.2 - - 0.7 - 0.8 - - 6.5 0.5 6.6 - 6.7 6.8 6.7 3.1 5.7 3.6 - 0.7 2.7 1.8 - 3.9 5.5 1.1 5.6 5.7 5.8 5.9 4.9 6.0 6.1 3.6 - 1.6 0.3 1.8 - 4.5 5.5 - 4.7 5.7 5.8 5.9 4.0 6.0 6.1 PRZDA - - - 3.1 - - 5.5 5.6 0.7 5.7 5.8 5.8 5.9 6.0 6.1 6.1 SLAST 5.3 - 1.0 3.4 - - - 2.8 3.1 4.9 - 4.8 5.6 5.1 5.0 - STOEN - - - - - - - 5.4 6.6 - - 6.7 6.8 - 1.5 6.9 STORO - - - - - - - - - - - - 6.8 4.7 - - - - - - - - - - - - - - 5.9 3.6 6.2 5.6 STRJO 4.5 - - 1.4 0.5 - 1.7 - - - - - - - 5.1 - - - - - - - - - 0.5 - - - 4.1 - 5.3 5.6 - - - - - - - 5.0 3.0 3.5 - 3.4 5.0 0.5 5.3 5.6 WEBMI - - - - - - - - - - - 2.0 1.1 - 2.0 - YRJIL - - - - - - - - - - - - - - - 1.8 ------------------------------------------------------------------------------------- Sum 53.4 17.4 10.2 40.9 14.7 19.9 47.7 73.6 45.1 63.7 43.5 98.7127.5 82.2 98.2110.5 3. Results (Meteors) ==================== July 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 -------------------------------------------------------------------------------- BENOR - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - BRIBE 13 - 1 13 - 6 1 3 - - - 3 18 15 2 CASFL 15 4 9 15 - - 13 - 10 8 3 7 4 12 28 11 4 6 5 - 3 7 5 11 1 1 6 4 8 20 CRIST - - - - 13 - - - - - - - - - 21 ELTMA - - - - - - - - - - - - - - - GONRU 1 15 20 - 14 18 12 21 11 3 8 16 18 18 16 HERCA - - - - - - - 5 - - - - - - 9 HINWO 15 11 - 30 8 - - 8 - 10 - - - - 25 KACJA 19 - 1 - 7 - - - - 17 14 17 - - - 24 17 1 - 19 - - 24 - 33 - 7 - - - 17 7 4 - 19 - - 6 25 16 17 7 - 8 17 LUNRO 7 6 - 30 - - - - - 5 2 20 15 5 10 MOLSI 72 - - 53 40 - 78 - - 79 - - - - 70 19 4 - 16 7 - 14 12 - 15 - - - 4 24 12 15 - - 10 - 12 3 15 - 1 8 24 2 - 17 15 - - 14 1 14 2 18 - 2 15 17 5 - PRZDA - - - - - - - - 22 - - 9 17 - - SLAST 11 2 1 - 9 - 2 7 8 11 11 - - - 14 STOEN 15 - - 11 - - 22 17 16 15 - - - - 21 STORO - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - STRJO 5 5 - 1 - 7 1 - - - 1 3 8 10 - 11 - - - - - - - - - - - - - - 4 - - 3 - - - - - - - 1 - - - WEBMI - 34 - - 27 - 53 - - - - - - - - YRJIL - - - - - - - - - - - - - - - -------------------------------------------------------------------------------- Sum 288 139 43 177 187 35 229 113 136 213 60 119 125 87 277 July 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 ------------------------------------------------------------------------------------- BENOR - - - - - - - - - - 20 20 16 24 13 - - - - - - - - - - - 3 7 16 3 5 - BRIBE 6 - - 15 8 5 18 27 24 - 2 23 24 3 8 14 CASFL 5 - - 8 - - 17 30 17 17 - - - 20 9 27 12 - 2 13 - - 20 17 12 19 2 25 23 8 5 11 CRIST - - - 3 - - - - - - 27 - - - - - ELTMA - - - - - - - - - - - 36 43 - - 44 GONRU 12 18 1 - 11 10 9 23 13 - 34 - 42 35 25 27 HERCA 9 9 8 - - 13 18 1 13 17 - 13 22 36 33 23 HINWO - - - - - - - - - 11 - 38 - 10 - 40 KACJA - - - 17 - - - - - - - 26 22 - 23 24 40 - - - - - - - - - - - - - - - 20 - 2 19 - - 8 3 7 22 - 20 20 18 10 5 LUNRO 5 12 - - 3 36 5 5 5 27 120 - 169 176 177 191 MOLSI - - - - - - - 81 - 64 - 126 107 68 3 114 - - 2 - 2 - - 15 3 19 - 37 21 16 6 37 8 - 1 8 5 - 12 15 2 18 38 40 40 17 60 46 6 - 4 4 14 - 14 28 - 20 34 39 47 11 55 43 PRZDA - - - 11 - - 38 35 6 28 47 46 58 30 38 43 SLAST 12 - 1 7 - - - 3 4 6 - 12 10 14 9 - STOEN - - - - - - - 14 29 - - 39 43 - 4 45 STORO - - - - - - - - - - - - 171 82 - - - - - - - - - - - - - - 273 56 215 149 STRJO 8 - - 7 1 - 3 - - - - - - - 26 - - - - - - - - - 1 - - - 17 - 14 23 - - - - - - - 19 6 8 - 16 18 1 20 17 WEBMI - - - - - - - - - - - 63 12 - 48 - YRJIL - - - - - - - - - - - - - - - 7 ------------------------------------------------------------------------------------- Sum 143 39 21 112 44 64 162 316 142 276 327 626 1214 628 806 930 Sirko Molau, 2008/08/29